We study a variational problem for the perimeter associated with the Grushin plane, called minimal partition problem with trace constraint. This consists in studying how to enclose three prescribed areas in the Grushin plane, using the least amount of perimeter, under an additional “one-dimensional” constraint on the intersections of their boundaries. We prove existence of regular solutions for this problem, and we characterize them in terms of isoperimetric sets, showing differences with the Euclidean case. The problem arises from the study of quantitative isoperimetric inequalities and has connections with the theory of minimal clusters.
A minimal partition problem with trace constraint in the Grushin plane
Franceschi V.
2017
Abstract
We study a variational problem for the perimeter associated with the Grushin plane, called minimal partition problem with trace constraint. This consists in studying how to enclose three prescribed areas in the Grushin plane, using the least amount of perimeter, under an additional “one-dimensional” constraint on the intersections of their boundaries. We prove existence of regular solutions for this problem, and we characterize them in terms of isoperimetric sets, showing differences with the Euclidean case. The problem arises from the study of quantitative isoperimetric inequalities and has connections with the theory of minimal clusters.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.