We develop a modelling framework for multiple yield curves driven by continuous-state branching processes with immigration (CBI processes). Exploiting the self-exciting behavior of CBI jump processes, this approach can reproduce the relevant empirical features of spreads between different interbank rates. In particular, we introduce multi-curve models driven by a flow of tempered alpha-stable CBI processes. Such models are especially parsimonious and tractable, and can generate contagion effects among different spreads. We provide a complete analytical framework, including a detailed study of discounted exponential moments of CBI processes. The proposed approach allows for explicit valuation formulae for all linear interest rate derivatives and semi-closed formulae for non-linear derivatives via Fourier techniques and quantization. We show that a simple specification of the model can be successfully calibrated to market data.
Multiple yield curve modelling with CBI processes
claudio fontana
;
2021
Abstract
We develop a modelling framework for multiple yield curves driven by continuous-state branching processes with immigration (CBI processes). Exploiting the self-exciting behavior of CBI jump processes, this approach can reproduce the relevant empirical features of spreads between different interbank rates. In particular, we introduce multi-curve models driven by a flow of tempered alpha-stable CBI processes. Such models are especially parsimonious and tractable, and can generate contagion effects among different spreads. We provide a complete analytical framework, including a detailed study of discounted exponential moments of CBI processes. The proposed approach allows for explicit valuation formulae for all linear interest rate derivatives and semi-closed formulae for non-linear derivatives via Fourier techniques and quantization. We show that a simple specification of the model can be successfully calibrated to market data.File | Dimensione | Formato | |
---|---|---|---|
CBI_multi-curve_new2.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
Postprint (accepted version)
Licenza:
Accesso gratuito
Dimensione
852 kB
Formato
Adobe PDF
|
852 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.