Multivariate meta-analysis of test accuracy studies when tests are evaluated in terms of sensitivity and specificity at more than one threshold represents an effective way to synthesize results by fully exploiting the data, if compared to univariate meta-analyses performed at each threshold independently. The approximation of logit transformations of sensitivities and specificities at different thresholds through a normal multivariate random-effects model is a recent proposal that straightforwardly extends the bivariate models well recommended for the one threshold case. However, drawbacks of the approach, such as poor estimation of the within-study correlations between sensitivities and between specificities, and severe computational issues can make it unappealing. We propose an alternative method for inference on common diagnostic measures using a pseudo-likelihood constructed under a working independence assumption between sensitivities and between specificities at different thresholds in the same study. The method does not require within-study correlations, overcomes the convergence issues and can be effortlessly implemented. Simulation studies highlight a satisfactory performance of the method, remarkably improving the results from the multivariate normal counterpart under different scenarios. The pseudo-likelihood approach is illustrated in the evaluation of a test used for diagnosis of preeclampsia as a cause of maternal and perinatal morbidity and mortality.
A pseudo-likelihood approach for multivariate meta-analysis of test accuracy studies with multiple thresholds.
Duc Khanh To
;Annamaria Guolo
2021
Abstract
Multivariate meta-analysis of test accuracy studies when tests are evaluated in terms of sensitivity and specificity at more than one threshold represents an effective way to synthesize results by fully exploiting the data, if compared to univariate meta-analyses performed at each threshold independently. The approximation of logit transformations of sensitivities and specificities at different thresholds through a normal multivariate random-effects model is a recent proposal that straightforwardly extends the bivariate models well recommended for the one threshold case. However, drawbacks of the approach, such as poor estimation of the within-study correlations between sensitivities and between specificities, and severe computational issues can make it unappealing. We propose an alternative method for inference on common diagnostic measures using a pseudo-likelihood constructed under a working independence assumption between sensitivities and between specificities at different thresholds in the same study. The method does not require within-study correlations, overcomes the convergence issues and can be effortlessly implemented. Simulation studies highlight a satisfactory performance of the method, remarkably improving the results from the multivariate normal counterpart under different scenarios. The pseudo-likelihood approach is illustrated in the evaluation of a test used for diagnosis of preeclampsia as a cause of maternal and perinatal morbidity and mortality.File | Dimensione | Formato | |
---|---|---|---|
Annamaria_Khanh_SMMR_2020.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
611.14 kB
Formato
Adobe PDF
|
611.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.