We present a mock stellar catalog, matching in volume, depth and data model the content of the planned Gaia early data release 3 (Gaia EDR3). We have generated our catalog (GeDR3mock) using galaxia, a tool to sample stars from an underlying Milky Way (MW) model or from N-body data. We used an updated Besançon Galactic model together with the latest PARSEC stellar evolutionary tracks, now also including white dwarfs. We added the Magellanic clouds and realistic open clusters with internal rotation. We empirically modeled uncertainties based on Gaia DR2 (GDR2) and scaled them according to the longer baseline in Gaia EDR3. The apparent magnitudes were reddened according to a new selection of 3D extinction maps. To help with the Gaia selection function we provide all-sky magnitude limit maps in G and BP for a few relevant GDR2 subsets together with the routines to produce these maps for user-defined subsets. We supplement the catalog with photometry and extinctions in non-Gaia bands. The catalog is available in the Virtual Observatory (http://dc.g-vo.org/tableinfo/gedr3mock.main) and can be queried just like the actual Gaia EDR3 will be. We highlight a few capabilities of the Astronomy Data Query Language with educative catalog queries. We use the data extracted from those queries to compare GeDR3mock to GDR2, which emphasises the importance of adding observational noise to the mock data. Since the underlying truth, e.g., stellar parameters, is know in GeDR3mock, it can be used to construct priors as well as mock data tests for parameter estimation. All code, models and data used to produce GeDR3mock are linked and contained in galaxia_wrap (https://github.com/jan-rybizki/Galaxia_wrap), a python package, representing a fast galactic forward model, able to project MW models and N-body data into realistic Gaia observables.

A gaia early dr3 mock stellar catalog: Galactic prior and selection function

Dal Tio, P.
;
2020

Abstract

We present a mock stellar catalog, matching in volume, depth and data model the content of the planned Gaia early data release 3 (Gaia EDR3). We have generated our catalog (GeDR3mock) using galaxia, a tool to sample stars from an underlying Milky Way (MW) model or from N-body data. We used an updated Besançon Galactic model together with the latest PARSEC stellar evolutionary tracks, now also including white dwarfs. We added the Magellanic clouds and realistic open clusters with internal rotation. We empirically modeled uncertainties based on Gaia DR2 (GDR2) and scaled them according to the longer baseline in Gaia EDR3. The apparent magnitudes were reddened according to a new selection of 3D extinction maps. To help with the Gaia selection function we provide all-sky magnitude limit maps in G and BP for a few relevant GDR2 subsets together with the routines to produce these maps for user-defined subsets. We supplement the catalog with photometry and extinctions in non-Gaia bands. The catalog is available in the Virtual Observatory (http://dc.g-vo.org/tableinfo/gedr3mock.main) and can be queried just like the actual Gaia EDR3 will be. We highlight a few capabilities of the Astronomy Data Query Language with educative catalog queries. We use the data extracted from those queries to compare GeDR3mock to GDR2, which emphasises the importance of adding observational noise to the mock data. Since the underlying truth, e.g., stellar parameters, is know in GeDR3mock, it can be used to construct priors as well as mock data tests for parameter estimation. All code, models and data used to produce GeDR3mock are linked and contained in galaxia_wrap (https://github.com/jan-rybizki/Galaxia_wrap), a python package, representing a fast galactic forward model, able to project MW models and N-body data into realistic Gaia observables.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3355595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
  • OpenAlex ND
social impact