Individually rare, when taken as a whole, genetic inborn errors of metabolism (IEM) account for a significant proportion of early onset encephalopathy. Prompt diagnosis is crucial to assess appropriate investigation and can sometimes warrant successful therapy. Recent improvements in technology and expansion of knowledge on the biochemical and molecular basis of these disorders allow astute child neurologists and paediatricians to improve the early diagnosis of these genetically determined defects. However, because of rarity and heterogeneity of these disorders, IEM encephalopathies are still a formidable challenge for most physicians. The most frequent cause of childhood IEM encephalopathy is mitochondrial disease, whose biochemical 'signature' is faulty energy supply due to defects of the last component of the oxidative pathways residing within mitochondria, i.e. the mitochondrial respiratory chain. © 2011.
Infantile mitochondrial encephalopathy
Ghezzi D.;Zeviani M.
2011
Abstract
Individually rare, when taken as a whole, genetic inborn errors of metabolism (IEM) account for a significant proportion of early onset encephalopathy. Prompt diagnosis is crucial to assess appropriate investigation and can sometimes warrant successful therapy. Recent improvements in technology and expansion of knowledge on the biochemical and molecular basis of these disorders allow astute child neurologists and paediatricians to improve the early diagnosis of these genetically determined defects. However, because of rarity and heterogeneity of these disorders, IEM encephalopathies are still a formidable challenge for most physicians. The most frequent cause of childhood IEM encephalopathy is mitochondrial disease, whose biochemical 'signature' is faulty energy supply due to defects of the last component of the oxidative pathways residing within mitochondria, i.e. the mitochondrial respiratory chain. © 2011.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.