In this paper, we develop a new algorithmic framework to solve black-box problems with integer variables. The strategy included in the framework makes use of specific search directions (so called primitive directions) and a suitably developed nonmonotone line search, thus guaranteeing a high level of freedom when exploring the integer lattice. First, we describe and analyze a version of the algorithm that tackles problems with only bound constraints on the variables. Then, we combine it with a penalty approach in order to solve problems with simulation constraints. In both cases we prove finite convergence to a suitably defined local minimum of the problem. We report extensive numerical experiments based on a test bed of both bound-constrained and generally-constrained problems. We show the effectiveness of the method when compared to other state-of-the-art solvers for black-box integer optimization.

An algorithmic framework based on primitive directions and nonmonotone line searches for black-box optimization problems with integer variables

Rinaldi F.
2020

Abstract

In this paper, we develop a new algorithmic framework to solve black-box problems with integer variables. The strategy included in the framework makes use of specific search directions (so called primitive directions) and a suitably developed nonmonotone line search, thus guaranteeing a high level of freedom when exploring the integer lattice. First, we describe and analyze a version of the algorithm that tackles problems with only bound constraints on the variables. Then, we combine it with a penalty approach in order to solve problems with simulation constraints. In both cases we prove finite convergence to a suitably defined local minimum of the problem. We report extensive numerical experiments based on a test bed of both bound-constrained and generally-constrained problems. We show the effectiveness of the method when compared to other state-of-the-art solvers for black-box integer optimization.
File in questo prodotto:
File Dimensione Formato  
6471.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 621.24 kB
Formato Adobe PDF
621.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3352575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact