Strong coupling between molecules and light can be achieved in resonant cavities, giving rise to hybrid light-molecule states (polaritons). Chemistry in such states is different than the original photochemistry of the molecule. As such, polaritonic chemistry is emerging as a non-conventional approach to manipulate photochemical reactions, toward, for example, increasing reaction specificity or enhancing yields. Using accurate quantum chemistry multiscale simulations, we find that strong coupling can lead to enhanced photoisomerization yields for azobenzene in a realistic nanoplasmonic setup. Strong coupling acts on the motion of azobenzene atoms in the multi-dimensional space of internal coordinates, steering them away from unreactive pathways accessible instead in the traditional regimen. Our results show that the chemical complexity of molecules, rather than being a foe, can be turned into a friend in the strong coupling regimen, endowing polaritonic chemistry of additional potentialities.
Strong Coupling with Light Enhances the Photoisomerization Quantum Yield of Azobenzene
Fregoni J.;Corni S.
2020
Abstract
Strong coupling between molecules and light can be achieved in resonant cavities, giving rise to hybrid light-molecule states (polaritons). Chemistry in such states is different than the original photochemistry of the molecule. As such, polaritonic chemistry is emerging as a non-conventional approach to manipulate photochemical reactions, toward, for example, increasing reaction specificity or enhancing yields. Using accurate quantum chemistry multiscale simulations, we find that strong coupling can lead to enhanced photoisomerization yields for azobenzene in a realistic nanoplasmonic setup. Strong coupling acts on the motion of azobenzene atoms in the multi-dimensional space of internal coordinates, steering them away from unreactive pathways accessible instead in the traditional regimen. Our results show that the chemical complexity of molecules, rather than being a foe, can be turned into a friend in the strong coupling regimen, endowing polaritonic chemistry of additional potentialities.File | Dimensione | Formato | |
---|---|---|---|
PIIS2451929419304784.pdf
Accesso riservato
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
3.49 MB
Formato
Adobe PDF
|
3.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.