he recent advances in sensor and communication technologies can provide the foundations for linking the physical manufacturing facility and machine world to the cyber world of Internet applications. The coupled manufacturing cyber-physical system is envisioned to handle the actual operations in the physical world while simultaneously monitor them in the cyber world with the help of advanced data processing and simulation models at both the manufacturing process and system operational levels. Moreover, a sensor-packed manufacturing system in which each process or piece of equipment makes available event and status information, coupled with market research for true advanced Big Data analytics, seem to be the right ingredients for event response selection and operation virtualization. As a drawback, the resulting manufacturing cyber-physical system will be vulnerable to the inevitable cyber-attacks, unfortunately, so common for the software and Internet-based systems. This reality makes cybersecurity penetration within the manufacturing domain a need that goes uncontested across researchers and practitioners. This work provides a review of the current status of virtualization and cloud-based services for manufacturing systems and of the use of Big Data analytics for planning and control of manufacturing operations. Building on already developed cloud business solutions, cloud manufacturing is expected to offer improved enterprise manufacturing and business decision support. Based on the current state-of-the-art cloud manufacturing solutions and Big Data applications, this work also proposes a framework for the development of predictive manufacturing cyber-physical systems that include capabilities for attaching to the Internet of Things, and capabilities for complex event processing and Big Data algorithmic analytics.
Big data and performance measurement research: trends, evolution and future opportunities
Garengo P.
2020
Abstract
he recent advances in sensor and communication technologies can provide the foundations for linking the physical manufacturing facility and machine world to the cyber world of Internet applications. The coupled manufacturing cyber-physical system is envisioned to handle the actual operations in the physical world while simultaneously monitor them in the cyber world with the help of advanced data processing and simulation models at both the manufacturing process and system operational levels. Moreover, a sensor-packed manufacturing system in which each process or piece of equipment makes available event and status information, coupled with market research for true advanced Big Data analytics, seem to be the right ingredients for event response selection and operation virtualization. As a drawback, the resulting manufacturing cyber-physical system will be vulnerable to the inevitable cyber-attacks, unfortunately, so common for the software and Internet-based systems. This reality makes cybersecurity penetration within the manufacturing domain a need that goes uncontested across researchers and practitioners. This work provides a review of the current status of virtualization and cloud-based services for manufacturing systems and of the use of Big Data analytics for planning and control of manufacturing operations. Building on already developed cloud business solutions, cloud manufacturing is expected to offer improved enterprise manufacturing and business decision support. Based on the current state-of-the-art cloud manufacturing solutions and Big Data applications, this work also proposes a framework for the development of predictive manufacturing cyber-physical systems that include capabilities for attaching to the Internet of Things, and capabilities for complex event processing and Big Data algorithmic analytics.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.