Our interactions with the visual world are guided by attention and visual working memory. Things that we look for and those we ignore are stored as templates that reflect our goals and the tasks at hand. The nature of such templates has been widely debated. A recent proposal is that these templates can be thought of as probabilistic representations of task-relevant features. Crucially, such probabilistic templates should accurately reflect feature probabilities in the environment. Here we ask whether observers can quickly form a correct internal model of a complex (bimodal) distribution of distractor features. We assessed observers’ representations by measuring the slowing of visual search when target features unexpectedly match a distractor template. Distractor stimuli were heterogeneous, randomly drawn on each trial from a bimodal probability distribution. Using two targets on each trial, we tested whether observers encode the full distribution, only one peak of it, or the average of the two peaks. Search was slower when the two targets corresponded to the two modes of a previous distractor distribution than when one target was at one of the modes and another between them or outside the distribution range. Furthermore, targets on the modes were reported later than targets between the modes that, in turn, were reported later than targets outside this range. This shows that observers use a correct internal model, representing both distribution modes using templates based on the full probability distribution rather than just one peak or simple summary statistics. The findings further confirm that performance in odd-one out search with repeated distractors cannot be described by a simple decision rule. Our findings indicate that probabilistic visual working memory templates guiding attention, dynamically adapt to task requirements, accurately reflecting the probabilistic nature of the input.

Probabilistic rejection templates in visual working memory

Campana G.;Kristjansson A.
2020

Abstract

Our interactions with the visual world are guided by attention and visual working memory. Things that we look for and those we ignore are stored as templates that reflect our goals and the tasks at hand. The nature of such templates has been widely debated. A recent proposal is that these templates can be thought of as probabilistic representations of task-relevant features. Crucially, such probabilistic templates should accurately reflect feature probabilities in the environment. Here we ask whether observers can quickly form a correct internal model of a complex (bimodal) distribution of distractor features. We assessed observers’ representations by measuring the slowing of visual search when target features unexpectedly match a distractor template. Distractor stimuli were heterogeneous, randomly drawn on each trial from a bimodal probability distribution. Using two targets on each trial, we tested whether observers encode the full distribution, only one peak of it, or the average of the two peaks. Search was slower when the two targets corresponded to the two modes of a previous distractor distribution than when one target was at one of the modes and another between them or outside the distribution range. Furthermore, targets on the modes were reported later than targets between the modes that, in turn, were reported later than targets outside this range. This shows that observers use a correct internal model, representing both distribution modes using templates based on the full probability distribution rather than just one peak or simple summary statistics. The findings further confirm that performance in odd-one out search with repeated distractors cannot be described by a simple decision rule. Our findings indicate that probabilistic visual working memory templates guiding attention, dynamically adapt to task requirements, accurately reflecting the probabilistic nature of the input.
2020
File in questo prodotto:
File Dimensione Formato  
56 Chetverikov et al Cognition 2020.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 684.37 kB
Formato Adobe PDF
684.37 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Probabilistic templates - fin with suppl-1.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3351653
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact