In 2004 we first reported catalytic nanoparticles, that are able to cleave phosphate diesters with very high efficiency (Angew. Chem. Int Ed, 2004, 43, 6165–6169) and dubbed them “nanozymes” for the similarity of their behavior with natural enzymes, both in terms of efficiency and mechanism of action. Since then the field has impressively expanded and a search on the web of science at the time of submitting this contribution returned almost 1,000 entries. This minireview highlights what has been done in the field focusing specifically on hydrolytic nanozymes, the focal point of the research in our group since its very beginning. Special emphasis is given to the advantage of bringing catalytic units in the confined space of a nanosystem in terms of inducing the cooperation between them, favoring the interaction with substrates, and altering the local environment. We will try to answer to questions like: why can a lipophilic substrate be transformed by these catalysts even in an aqueous environment? Why may the pH in the catalytic loci of the nanosystem be different from that of the bulk solution even in the presence of buffers? Why are most of these nanosystems better than monovalent ones?.

Hydrolytic Nanozymes

Gabrielli L.;Prins L. J.;Rastrelli F.;Mancin F.;Scrimin P.
2020

Abstract

In 2004 we first reported catalytic nanoparticles, that are able to cleave phosphate diesters with very high efficiency (Angew. Chem. Int Ed, 2004, 43, 6165–6169) and dubbed them “nanozymes” for the similarity of their behavior with natural enzymes, both in terms of efficiency and mechanism of action. Since then the field has impressively expanded and a search on the web of science at the time of submitting this contribution returned almost 1,000 entries. This minireview highlights what has been done in the field focusing specifically on hydrolytic nanozymes, the focal point of the research in our group since its very beginning. Special emphasis is given to the advantage of bringing catalytic units in the confined space of a nanosystem in terms of inducing the cooperation between them, favoring the interaction with substrates, and altering the local environment. We will try to answer to questions like: why can a lipophilic substrate be transformed by these catalysts even in an aqueous environment? Why may the pH in the catalytic loci of the nanosystem be different from that of the bulk solution even in the presence of buffers? Why are most of these nanosystems better than monovalent ones?.
File in questo prodotto:
File Dimensione Formato  
ejoc.202000356.pdf

Accesso riservato

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3351424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
  • OpenAlex ND
social impact