Until recently, solar assisted heat pumps have used solar collectors as a cold source. Solar collectors provide, when possible, direct heat, otherwise they offer temperature levels to the heat pump evaporator higher than the outside air. At the same time, solar thermal cooling exploits the solar collectors and the absorption chiller only in hot months. Photovoltaic/Thermal (PVT) modules have been available on the market in recent years for solar cogeneration, but their utilization can be problematic due to PhotoVoltaic (PV) cell damage in cases where there is no heating request. This paper considers the possibility of coupling evacuated tube collectors and photovoltaic/thermal modules to drive an absorption heat pump-based plant operating as an absorption chiller in the summertime. The cold source is the solar energy and the ground, which is recharged by the solar thermal and photovoltaic/thermal collectors and by the cooling of the absorber-condenser in mid-seasons and summer. This study analyzes the system behavior in yearly operation and evaluates the role of suitable storage tanks in two different climates, varying the size of the two solar fields and the generator tank. In the best plant configuration, a primary energy ratio of 26.6 in colder climates with cloudy skies and 20 in hotter climates with clearer skies is obtained.

PVT and ETC coupling for annual heating and cooling by absorption heat pumps

Noro M.
;
Lazzarin R.
2020

Abstract

Until recently, solar assisted heat pumps have used solar collectors as a cold source. Solar collectors provide, when possible, direct heat, otherwise they offer temperature levels to the heat pump evaporator higher than the outside air. At the same time, solar thermal cooling exploits the solar collectors and the absorption chiller only in hot months. Photovoltaic/Thermal (PVT) modules have been available on the market in recent years for solar cogeneration, but their utilization can be problematic due to PhotoVoltaic (PV) cell damage in cases where there is no heating request. This paper considers the possibility of coupling evacuated tube collectors and photovoltaic/thermal modules to drive an absorption heat pump-based plant operating as an absorption chiller in the summertime. The cold source is the solar energy and the ground, which is recharged by the solar thermal and photovoltaic/thermal collectors and by the cooling of the absorber-condenser in mid-seasons and summer. This study analyzes the system behavior in yearly operation and evaluates the role of suitable storage tanks in two different climates, varying the size of the two solar fields and the generator tank. In the best plant configuration, a primary energy ratio of 26.6 in colder climates with cloudy skies and 20 in hotter climates with clearer skies is obtained.
2020
File in questo prodotto:
File Dimensione Formato  
ETC-PVT Sustainability 2020 - Final published.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 6.58 MB
Formato Adobe PDF
6.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3351038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact