We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from () collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is 2(), ΩΩ+4(), ΩΩ−4(), 34(), 7(), 8(), 4(), or 2() with q even is the group algebra.
Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V. Mixed classes in Chevalley and Steinberg groups
Giovanna Carnovale
;
2021
Abstract
We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from () collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is 2(), ΩΩ+4(), ΩΩ−4(), 34(), 7(), 8(), 4(), or 2() with q even is the group algebra.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
finite-lie-partV-mixed_MAMA_26ago20.pdf
solo utenti autorizzati
Descrizione: Preprint
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
589.2 kB
Formato
Adobe PDF
|
589.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Andruskiewitsch2021_Article_Finite-dimensionalPointedHopfA.pdf
accesso aperto
Descrizione: Open access funding provided by Università degli Studi di Padova within the CRUI-CARE Agreement
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
700.55 kB
Formato
Adobe PDF
|
700.55 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.