Combined approaches based on immunotherapy and drugs supporting immune effector cell function might increase treatment options for pancreatic ductal adenocarcinoma (PDAC), vitamin D being a suitable drug candidate. In this study, we evaluated whether treatment with the vitamin D analogue, calcipotriol, counterbalances PDAC induced and SMAD4-associated intracellular calcium [Ca2+]i alterations, cytokines release, immune effector function, and the intracellular signaling of peripheral blood mononuclear cells (PBMCs). Calcipotriol counteracted the [Ca2+]i depletion of PBMCs induced by SMAD4-expressing PDAC cells, which conditioned media augmented the number of calcium flows while reducing whole [Ca2+]i. While calcipotriol inhibited spontaneous and PDAC-induced tumor necrosis factor alpha (TNF-α) release by PBMC and reduced intracellular transforming growth factor beta (TGF-β), it did not counteract the lymphocytes proliferation induced in allogenic co-culture by PDAC-conditioned PBMCs. Calcipotriol mainly antagonized PDAC-induced apoptosis and partially restored PDAC-inhibited NF-κB signaling pathway. In conclusion, alterations induced by PDAC cells in the [Ca2+]i of immune cells can be partially reverted by calcipotriol treatment, which promotes inflammation and antagonizes PBMCs apoptosis. These effects, together with the dampening of intracellular TGF-β, might result in an overall anti-tumor effect, thus supporting the administration of vitamin D in PDAC patients.

Vitamin D prevents pancreatic cancer-induced apoptosis signaling of inflammatory cells

Moz S.
;
Contran N.;Facco M.;Trimarco V.;Plebani M.;Basso D.
2020

Abstract

Combined approaches based on immunotherapy and drugs supporting immune effector cell function might increase treatment options for pancreatic ductal adenocarcinoma (PDAC), vitamin D being a suitable drug candidate. In this study, we evaluated whether treatment with the vitamin D analogue, calcipotriol, counterbalances PDAC induced and SMAD4-associated intracellular calcium [Ca2+]i alterations, cytokines release, immune effector function, and the intracellular signaling of peripheral blood mononuclear cells (PBMCs). Calcipotriol counteracted the [Ca2+]i depletion of PBMCs induced by SMAD4-expressing PDAC cells, which conditioned media augmented the number of calcium flows while reducing whole [Ca2+]i. While calcipotriol inhibited spontaneous and PDAC-induced tumor necrosis factor alpha (TNF-α) release by PBMC and reduced intracellular transforming growth factor beta (TGF-β), it did not counteract the lymphocytes proliferation induced in allogenic co-culture by PDAC-conditioned PBMCs. Calcipotriol mainly antagonized PDAC-induced apoptosis and partially restored PDAC-inhibited NF-κB signaling pathway. In conclusion, alterations induced by PDAC cells in the [Ca2+]i of immune cells can be partially reverted by calcipotriol treatment, which promotes inflammation and antagonizes PBMCs apoptosis. These effects, together with the dampening of intracellular TGF-β, might result in an overall anti-tumor effect, thus supporting the administration of vitamin D in PDAC patients.
2020
File in questo prodotto:
File Dimensione Formato  
biomolecules-10-01055.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3349974
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact