Extensive decline and mortality events of alder trees have recently been observed in several riparian ecosystems in Italy. Since there is little information about the aetiology of this disease and given the high ecological relevance of riparian ecosystems, an in-depth study was conducted in three sites spanning from the Mediterranean to Alpine regions. From spring 2019 to spring 2020, 261 samples of bleeding cankers, rhizosphere soil and leaves used as baits along waterways were collected and used for Phytophthora isolation. Based on morphology, colony appearance and DNA sequence data, 10 species belonging to 6 clades were identified. These included P. plurivora (84 isolates), P. pseudocryptogea (50), P. hydropathica (18), P. gonapodyides (14), P. bilorbang (13), P. pseudosyringae (12), P. lacustris (11), P. acerina (7), P. cactorum (1) and one isolate of the hybrid Phytophthora serendipita. In addition, two new Phytophthora species, one of which is described here as Phytophthora alpina sp. nov., were isolated. The pathogenicity of P. alpina and other species obtained from samples collected in the green alder stand was assessed on 3-year-old seedlings. All species proved to be pathogenic on green alder causing symptoms congruent with field observations. Results obtained have allowed us to expand knowledge about alder decline aetiology. The diversity of pathogenicity of Phytophthora species associated with symptomatic alder trees suggested that no single agent is responsible for the disease, but that it is the result of multiple infections of different Phytophthora species, variable in assemblages among sites.

Diversity and pathogenicity of Phytophthora species associated with declining alder trees in Italy and description of Phytophthora alpina sp. nov

Bregant C.;Maddau L.;Montecchio L.;Linaldeddu B. T.
2020

Abstract

Extensive decline and mortality events of alder trees have recently been observed in several riparian ecosystems in Italy. Since there is little information about the aetiology of this disease and given the high ecological relevance of riparian ecosystems, an in-depth study was conducted in three sites spanning from the Mediterranean to Alpine regions. From spring 2019 to spring 2020, 261 samples of bleeding cankers, rhizosphere soil and leaves used as baits along waterways were collected and used for Phytophthora isolation. Based on morphology, colony appearance and DNA sequence data, 10 species belonging to 6 clades were identified. These included P. plurivora (84 isolates), P. pseudocryptogea (50), P. hydropathica (18), P. gonapodyides (14), P. bilorbang (13), P. pseudosyringae (12), P. lacustris (11), P. acerina (7), P. cactorum (1) and one isolate of the hybrid Phytophthora serendipita. In addition, two new Phytophthora species, one of which is described here as Phytophthora alpina sp. nov., were isolated. The pathogenicity of P. alpina and other species obtained from samples collected in the green alder stand was assessed on 3-year-old seedlings. All species proved to be pathogenic on green alder causing symptoms congruent with field observations. Results obtained have allowed us to expand knowledge about alder decline aetiology. The diversity of pathogenicity of Phytophthora species associated with symptomatic alder trees suggested that no single agent is responsible for the disease, but that it is the result of multiple infections of different Phytophthora species, variable in assemblages among sites.
2020
File in questo prodotto:
File Dimensione Formato  
forests-11-00848-v2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3349729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact