Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.
Foxg1 Upregulation Enhances Neocortical Activity
Caleo M.;Ballerini L.;
2020
Abstract
Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.File | Dimensione | Formato | |
---|---|---|---|
bhaa107.pdf
Accesso riservato
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.