Bicycles and motorcycles are characterized by large rider-to-vehicle mass ratios, thus making estimation of the rider's inertia especially relevant. The total inertia can be derived from the body segment inertial properties (BSIP) which, in turn, can be obtained from the prediction/regression formulas available in the literature. Therefore, a parametric multibody three-dimensional rider model is devised, where the four most-used BSIP formulas (herein named Dempster, Reynolds-NASA, Zatsiorsky-DeLeva, and McConville-Young-Dumas, after their authors) are implemented. After an experimental comparison, the effects of the main posture parameters (i.e., torso inclination, knee distance, elbow distance, and rider height) are analyzed in three riding conditions (sport, touring, and scooter). It is found that the elbow distance has a minor effect on the location of the center of mass and moments of inertia, while the effect of the knee distance is on the same order magnitude as changing the BSIP data set. Torso inclination and rider height are the most relevant parameters. Tables with the coefficients necessary to populate the three-dimensional rider model with the four data sets considered are given. Typical inertial parameters of the whole rider are also given, as a reference for those not willing to implement the full multibody model.
A three-dimensional parametric biomechanical rider model for multibody applications
Bova M.;Massaro M.
;Petrone N.
2020
Abstract
Bicycles and motorcycles are characterized by large rider-to-vehicle mass ratios, thus making estimation of the rider's inertia especially relevant. The total inertia can be derived from the body segment inertial properties (BSIP) which, in turn, can be obtained from the prediction/regression formulas available in the literature. Therefore, a parametric multibody three-dimensional rider model is devised, where the four most-used BSIP formulas (herein named Dempster, Reynolds-NASA, Zatsiorsky-DeLeva, and McConville-Young-Dumas, after their authors) are implemented. After an experimental comparison, the effects of the main posture parameters (i.e., torso inclination, knee distance, elbow distance, and rider height) are analyzed in three riding conditions (sport, touring, and scooter). It is found that the elbow distance has a minor effect on the location of the center of mass and moments of inertia, while the effect of the knee distance is on the same order magnitude as changing the BSIP data set. Torso inclination and rider height are the most relevant parameters. Tables with the coefficients necessary to populate the three-dimensional rider model with the four data sets considered are given. Typical inertial parameters of the whole rider are also given, as a reference for those not willing to implement the full multibody model.File | Dimensione | Formato | |
---|---|---|---|
A-three-dimensional-parametric-biomechanical-rider-model-for-multibody-applications.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.