Numerous methods for evaluation of global fibrinolytic activity in whole blood or plasma have been proposed, with the majority based on tissue-type plasminogen activator (t-PA) addition to initiate fibrinolysis. We propose that such an approach is useful to reveal hypofibrinolysis, but t-PA concentrations should be kept to a minimum. In this paper, we describe a low-concentration t-PA plasma turbidity assay to evaluate several congenital factor deficiencies, including plasminogen activator inhibitor-1 (PAI-1) and plasminogen deficiency, as well as hemophilia A and B. In addition, we demonstrate a threshold dependency on endogenous PAI-1 levels. To assess endogenous hyperfibrinolysis, we suggest that assays that avoid t-PA addition are preferable, with assays based on euglobulin fractionation remaining a viable choice. We describe a euglobulin fraction clot lysis time (ECLT) assay with spectrophotometric readout and other modifications, and evaluate it as a tool to measure hyperfibrinolysis in inherited clotting factor deficiency states. We demonstrate that the ECLT is predominantly driven by residual amounts of PAI-1, t-PA, and alpha(2)-antiplasmin. These assays should be further evaluated for the detection of hypo- or hyperfibrinolysis in acquired thrombotic or hemorrhagic disorders.
Development and application of global assays of hyper- and hypofibrinolysis
Campello, Elena;Simioni, Paolo;
2020
Abstract
Numerous methods for evaluation of global fibrinolytic activity in whole blood or plasma have been proposed, with the majority based on tissue-type plasminogen activator (t-PA) addition to initiate fibrinolysis. We propose that such an approach is useful to reveal hypofibrinolysis, but t-PA concentrations should be kept to a minimum. In this paper, we describe a low-concentration t-PA plasma turbidity assay to evaluate several congenital factor deficiencies, including plasminogen activator inhibitor-1 (PAI-1) and plasminogen deficiency, as well as hemophilia A and B. In addition, we demonstrate a threshold dependency on endogenous PAI-1 levels. To assess endogenous hyperfibrinolysis, we suggest that assays that avoid t-PA addition are preferable, with assays based on euglobulin fractionation remaining a viable choice. We describe a euglobulin fraction clot lysis time (ECLT) assay with spectrophotometric readout and other modifications, and evaluate it as a tool to measure hyperfibrinolysis in inherited clotting factor deficiency states. We demonstrate that the ECLT is predominantly driven by residual amounts of PAI-1, t-PA, and alpha(2)-antiplasmin. These assays should be further evaluated for the detection of hypo- or hyperfibrinolysis in acquired thrombotic or hemorrhagic disorders.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.