In this data article, we report data and experiments related to the research article entitled “A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization”, by Cristofari et al. (2017). The method proposed in Cristofari et al. (2017), tackles optimization problems with bound constraints by properly combining an active-set estimate with a truncated Newton strategy. Here, we report the detailed numerical experience performed over a commonly used test set, namely CUTEst (Gould et al., 2015). First, the algorithm ASA-BCP proposed in Cristofari et al. (2017) is compared with the related method NMBC (De Santis et al., 2012). Then, a comparison with the renowned methods ALGENCAN (Birgin and Martínez et al., 2002) and LANCELOT B (Gould et al., 2003) is reported.

Data and performance of an active-set truncated Newton method with non-monotone line search for bound-constrained optimization

Cristofari A.;Rinaldi F.
2018

Abstract

In this data article, we report data and experiments related to the research article entitled “A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization”, by Cristofari et al. (2017). The method proposed in Cristofari et al. (2017), tackles optimization problems with bound constraints by properly combining an active-set estimate with a truncated Newton strategy. Here, we report the detailed numerical experience performed over a commonly used test set, namely CUTEst (Gould et al., 2015). First, the algorithm ASA-BCP proposed in Cristofari et al. (2017) is compared with the related method NMBC (De Santis et al., 2012). Then, a comparison with the renowned methods ALGENCAN (Birgin and Martínez et al., 2002) and LANCELOT B (Gould et al., 2003) is reported.
2018
File in questo prodotto:
File Dimensione Formato  
(Cristofari et al., 2018) Data and performance of an active-set truncated Newton method with non-monotone line search for bound-constrained optimization.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 211.18 kB
Formato Adobe PDF
211.18 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3341482
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact