We survey a few trace theorems for Sobolev spaces on N-dimensional Euclidean domains. We include known results on linear subspaces, in particular hyperspaces, and smooth boundaries, as well as less known results for Lipschitz boundaries, including Besov's Theorem and other characterizations of traces on planar domains, polygons in particular, in the spirit of the work of P. Grisvard. Finally, we present a recent approach, originally developed by G. Auchmuty in the case of the Sobolev space H-1(Omega) on a Lipschitz domain Omega, and which we have further developed for the trace spaces of H-k(Omega), k >= 2, by using Fourier expansions associated with the eigenfunctions of new multi-parameter polyharmonic Steklov problems.
ON TRACE THEOREMS FOR SOBOLEV SPACES
Lamberti, PD
;Provenzano, L
2020
Abstract
We survey a few trace theorems for Sobolev spaces on N-dimensional Euclidean domains. We include known results on linear subspaces, in particular hyperspaces, and smooth boundaries, as well as less known results for Lipschitz boundaries, including Besov's Theorem and other characterizations of traces on planar domains, polygons in particular, in the spirit of the work of P. Grisvard. Finally, we present a recent approach, originally developed by G. Auchmuty in the case of the Sobolev space H-1(Omega) on a Lipschitz domain Omega, and which we have further developed for the trace spaces of H-k(Omega), k >= 2, by using Fourier expansions associated with the eigenfunctions of new multi-parameter polyharmonic Steklov problems.File | Dimensione | Formato | |
---|---|---|---|
1959-Article Text-5946-1-10-20191224.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
234.94 kB
Formato
Adobe PDF
|
234.94 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.