Ex vivo gene transfer to the graft before transplantation is an attractive option for circumventing systemic side effects of chronic antirejection therapy. Gene delivery of the immunomodulatory protein cytotoxic T-lymphocyte-associated protein 4-immunoglobulin (CTLA4-Ig) prevented chronic kidney rejection in a rat model of allotransplantation without the need for systemic immunosuppression. Here we generated adeno-associated virus type 2 (AAV2) and AAV9 vectors encoding for LEA29Y, an optimized version of CTLA4-Ig. Both LEA29Y vectors were equally efficient for reducing T-cell proliferation in vitro. Serotype 9 was chosen for in vivo experiments owing to a lower frequency of preformed antibodies against the AAV9 capsid in 16 non-human primate tested sera. AAV9-LEA29Y was able to transduce the kidney of non-human primates in an autotransplantation model. Expression of LEA29Y mRNA by renal cells translated into the production of the corresponding protein, which was confined to the graft but not detected in serum. Results in non-human primates represent a step forward in maintaining the portability of this strategy into clinics.

AAV9-mediated engineering of autotransplanted kidney of non-human primates

Azzollini N.;Zentilin L.;Cozzi E.;Remuzzi G.;Benigni A.
2017

Abstract

Ex vivo gene transfer to the graft before transplantation is an attractive option for circumventing systemic side effects of chronic antirejection therapy. Gene delivery of the immunomodulatory protein cytotoxic T-lymphocyte-associated protein 4-immunoglobulin (CTLA4-Ig) prevented chronic kidney rejection in a rat model of allotransplantation without the need for systemic immunosuppression. Here we generated adeno-associated virus type 2 (AAV2) and AAV9 vectors encoding for LEA29Y, an optimized version of CTLA4-Ig. Both LEA29Y vectors were equally efficient for reducing T-cell proliferation in vitro. Serotype 9 was chosen for in vivo experiments owing to a lower frequency of preformed antibodies against the AAV9 capsid in 16 non-human primate tested sera. AAV9-LEA29Y was able to transduce the kidney of non-human primates in an autotransplantation model. Expression of LEA29Y mRNA by renal cells translated into the production of the corresponding protein, which was confined to the graft but not detected in serum. Results in non-human primates represent a step forward in maintaining the portability of this strategy into clinics.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3340088
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact