A pentacyclic quinoid dye, KuQ(O)3OH, combining (i) extended visible absorption up to 600 nm, (ii) excited state reduction potential >2 V vs. NHE, and (iii) a photoinduced proton-coupled electron transfer mechanism, has been used for the fabrication of dye-sensitized SnO2 photoanodes integrating a ruthenium polyoxometalate water oxidation catalyst. The resulting photoelectrode SnO2|KuQ(O)3OH|Ru4POM displays a light harvesting efficiency up to 90% in the range 500-600 nm, an onset potential as low as 0.2 V vs. NHE at pH 5.8, photoinduced oxygen evolution with a faradaic efficiency of 70 ± 15% and an absorbed-photon-to-current efficiency up to 0.12 ± 0.01%.
Photoanodes for water oxidation with visible light based on a pentacyclic quinoid organic dye enabling proton-coupled electron transfer
Volpato G. A.;Gobbato T.;Gagliardi V.;Bonchio M.;Sartorel A.
2020
Abstract
A pentacyclic quinoid dye, KuQ(O)3OH, combining (i) extended visible absorption up to 600 nm, (ii) excited state reduction potential >2 V vs. NHE, and (iii) a photoinduced proton-coupled electron transfer mechanism, has been used for the fabrication of dye-sensitized SnO2 photoanodes integrating a ruthenium polyoxometalate water oxidation catalyst. The resulting photoelectrode SnO2|KuQ(O)3OH|Ru4POM displays a light harvesting efficiency up to 90% in the range 500-600 nm, an onset potential as low as 0.2 V vs. NHE at pH 5.8, photoinduced oxygen evolution with a faradaic efficiency of 70 ± 15% and an absorbed-photon-to-current efficiency up to 0.12 ± 0.01%.File | Dimensione | Formato | |
---|---|---|---|
ChemComm2020_56_2248-2251.pdf
non disponibili
Descrizione: main text
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
3.18 MB
Formato
Adobe PDF
|
3.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.