Purpose: To develop and assess a novel custom next-generation sequencing (NGS) panel for male infertility genetic diagnosis. Methods: A total of 241 subjects with diagnosis of idiopathic infertility ranging from azoospermia to normozoospermia were sequenced by a custom NGS panel including AR, FSHB, FSHR, KLHL10, NR5A1, NANOS1, SEPT12, SYCP3, TEX11 genes. Variants with minor allele frequency < 1% were confirmed by Sanger sequencing. Results: Nineteen missense variants were detected in 23 subjects with abnormal sperm count, whilst no variants were identified in normozoospermic men. Of identified variants, we prioritized variants classified as pathogenic and of uncertain significance (VUS) (63.1%, 12/19). No missense variants were found in males with normal seminal parameters (0/67). Therefore, the prevalence of variants was significantly higher in patients with spermatogenic impairment (16/174 vs 0/67, p = 0.007). Conclusion: This study confirms the utility to apply NGS panel for infertility diagnosis in order to find new genetic variants potentially linked to male infertility with much higher accuracy than standard tests suggested by guidelines. Indeed, based on biological significance, prevalence in the general population and clinical data of patients, it is plausible that identified variants in this study might be linked to quantitative spermatogenic impairment, although further studies are needed.

Development of a novel next-generation sequencing panel for diagnosis of quantitative spermatogenic impairment

Rocca M. S.
Conceptualization
;
Ghezzi M.
Software
;
Cosci I.
Resources
;
Pilichou K.
Writing – Review & Editing
;
Celeghin R.
Methodology
;
Foresta C.
Funding Acquisition
;
Ferlin A.
Supervision
2020

Abstract

Purpose: To develop and assess a novel custom next-generation sequencing (NGS) panel for male infertility genetic diagnosis. Methods: A total of 241 subjects with diagnosis of idiopathic infertility ranging from azoospermia to normozoospermia were sequenced by a custom NGS panel including AR, FSHB, FSHR, KLHL10, NR5A1, NANOS1, SEPT12, SYCP3, TEX11 genes. Variants with minor allele frequency < 1% were confirmed by Sanger sequencing. Results: Nineteen missense variants were detected in 23 subjects with abnormal sperm count, whilst no variants were identified in normozoospermic men. Of identified variants, we prioritized variants classified as pathogenic and of uncertain significance (VUS) (63.1%, 12/19). No missense variants were found in males with normal seminal parameters (0/67). Therefore, the prevalence of variants was significantly higher in patients with spermatogenic impairment (16/174 vs 0/67, p = 0.007). Conclusion: This study confirms the utility to apply NGS panel for infertility diagnosis in order to find new genetic variants potentially linked to male infertility with much higher accuracy than standard tests suggested by guidelines. Indeed, based on biological significance, prevalence in the general population and clinical data of patients, it is plausible that identified variants in this study might be linked to quantitative spermatogenic impairment, although further studies are needed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3338840
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact