Neuroinflammation, the complex immune response of the central nervous system (CNS), when sustained, is a common denominator in the etiology and course of all major neurological diseases, including neurodevelopmental, neurodegenerative, and psychiatric disorders (e.g., Alzheimer's disease, AD; Parkinson's disease, PD; multiple sclerosis, MS; motor neuron disease; depression; autism spectrum disorder; and schizophrenia). Cellular (microglia and mast cells, two brain-resident immune cells, together with astrocytes) and molecular immune components (e.g., cytokines, complement and patternrecognition receptors) act as key regulators of neuroinflammation (Skaper et al., 2012). In response to pathological triggers or neuronal damage, immune cells start an innate immune response with the aim to eliminate the initial cause of injury. However, when the cellular activity becomes dysregulated, it results in an inappropriate immune response that can be injurious and affect CNS functions. Thus, limiting neuroinflammation and microglia activity represents a potential strategy to alleviate neuroinflammationrelated diseases. The Research Topic collects 20 manuscripts, divided into five sections, that include both original research articles and reviews of the emerging literature and explore the role of neuroinflammation in various neurological diseases. There is particular attention dedicated to the relevant research exploring the mechanisms and mediators involved in the resolution of neuroinflammation. Our aim was to generate a valuable discussion contributing to identify new therapeutic targets in brain damage and providing new drug development opportunities for the prevention and treatment of CNS diseases involving neuroinflammation.

Editorial: Neuroinflammation and Its Resolution: From Molecular Mechanisms to Therapeutic Perspectives

Zusso M.
;
Moro S.;Giusti P.
2020

Abstract

Neuroinflammation, the complex immune response of the central nervous system (CNS), when sustained, is a common denominator in the etiology and course of all major neurological diseases, including neurodevelopmental, neurodegenerative, and psychiatric disorders (e.g., Alzheimer's disease, AD; Parkinson's disease, PD; multiple sclerosis, MS; motor neuron disease; depression; autism spectrum disorder; and schizophrenia). Cellular (microglia and mast cells, two brain-resident immune cells, together with astrocytes) and molecular immune components (e.g., cytokines, complement and patternrecognition receptors) act as key regulators of neuroinflammation (Skaper et al., 2012). In response to pathological triggers or neuronal damage, immune cells start an innate immune response with the aim to eliminate the initial cause of injury. However, when the cellular activity becomes dysregulated, it results in an inappropriate immune response that can be injurious and affect CNS functions. Thus, limiting neuroinflammation and microglia activity represents a potential strategy to alleviate neuroinflammationrelated diseases. The Research Topic collects 20 manuscripts, divided into five sections, that include both original research articles and reviews of the emerging literature and explore the role of neuroinflammation in various neurological diseases. There is particular attention dedicated to the relevant research exploring the mechanisms and mediators involved in the resolution of neuroinflammation. Our aim was to generate a valuable discussion contributing to identify new therapeutic targets in brain damage and providing new drug development opportunities for the prevention and treatment of CNS diseases involving neuroinflammation.
File in questo prodotto:
File Dimensione Formato  
fphar-11-00480.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 224.13 kB
Formato Adobe PDF
224.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3338345
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact