Quantum key distribution (QKD) relies on quantum communication to allow distant parties to share a secure cryptographic key. Widespread adoption of QKD in current telecommunication networks will require the development of simple, low-cost, and stable systems. However, current QKD implementations usually include additional hardware that perform auxiliary tasks such as temporal synchronization and polarization basis tracking. Here we present a polarization-based QKD system operating at 1550 nm that performs synchronization and polarization compensation by exploiting only the hardware already needed for the quantum communication task. Polarization encoding is performed by a self-compensating Sagnac loop modulator that exhibits high temporal stability and the lowest intrinsic quantum bit error rate reported so far. The QKD system was tested over a fiber-optic link, demonstrating tolerance up to about 40 dB of channel losses. Due to its reduced hardware requirements and the quality of the s...

Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder

Agnesi, Costantino;Avesani, Marco;Calderaro, Luca;Stanco, Andrea;Foletto, Giulio;Zahidy, Mujtaba;Scriminich, Alessia;Vedovato, Francesco;Vallone, Giuseppe;Villoresi, Paolo
2020

Abstract

Quantum key distribution (QKD) relies on quantum communication to allow distant parties to share a secure cryptographic key. Widespread adoption of QKD in current telecommunication networks will require the development of simple, low-cost, and stable systems. However, current QKD implementations usually include additional hardware that perform auxiliary tasks such as temporal synchronization and polarization basis tracking. Here we present a polarization-based QKD system operating at 1550 nm that performs synchronization and polarization compensation by exploiting only the hardware already needed for the quantum communication task. Polarization encoding is performed by a self-compensating Sagnac loop modulator that exhibits high temporal stability and the lowest intrinsic quantum bit error rate reported so far. The QKD system was tested over a fiber-optic link, demonstrating tolerance up to about 40 dB of channel losses. Due to its reduced hardware requirements and the quality of the s...
2020
File in questo prodotto:
File Dimensione Formato  
2020.04_optica-7-4-284.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.9 MB
Formato Adobe PDF
4.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3338312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex ND
social impact