The extensive loss of land elevation and the consequent exposure to flood hazards are seriously threatening the long-term survival of the Mississippi Delta. Shallow compaction of the top soil is one of the major components contributing to the relative sea level rise. In the last decades, more subsidence measurements have become available and recent studies demonstrate that compaction of Holocene strata is dominant. Here we propose a novel application aimed at modeling the present-day shallow compaction due to consolidation processes in the top soil. Soil compaction is properly computed and accounts for the large soil grain motion and the delayed dissipation of pore-water overpressure. The grain motion is described by means of a Lagrangian approach with an adaptive mesh where the grid nodes follows the accretion/compaction processes. Model calibration is obtained from stratigraphic and geochrology information collected at the Myrtle Grove Subsidence Superstation, where a nearly 40 m-dee...
A shallow compaction model for Holocene Mississippi Delta sediments
Zoccarato, Claudia
;Teatini, Pietro;
2020
Abstract
The extensive loss of land elevation and the consequent exposure to flood hazards are seriously threatening the long-term survival of the Mississippi Delta. Shallow compaction of the top soil is one of the major components contributing to the relative sea level rise. In the last decades, more subsidence measurements have become available and recent studies demonstrate that compaction of Holocene strata is dominant. Here we propose a novel application aimed at modeling the present-day shallow compaction due to consolidation processes in the top soil. Soil compaction is properly computed and accounts for the large soil grain motion and the delayed dissipation of pore-water overpressure. The grain motion is described by means of a Lagrangian approach with an adaptive mesh where the grid nodes follows the accretion/compaction processes. Model calibration is obtained from stratigraphic and geochrology information collected at the Myrtle Grove Subsidence Superstation, where a nearly 40 m-dee...File | Dimensione | Formato | |
---|---|---|---|
piahs-382-565-2020.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.