We deal with the problem of computing near G-optimal compressed designs for high-degree polynomial regression on fine discretizations of 2d and 3d regions of arbitrary shape. The key tool is Tchakaloff-like compression of discrete probability measures, via an improved version of the Lawson-Hanson NNLS solver for the corresponding full and large-scale underdetermined moment system, that can have for example a size order of 10ˆ3 (basis polynomials) x 10ˆ4 (nodes).

Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs

Dessole, M;Marcuzzi, F;Vianello, M
2020

Abstract

We deal with the problem of computing near G-optimal compressed designs for high-degree polynomial regression on fine discretizations of 2d and 3d regions of arbitrary shape. The key tool is Tchakaloff-like compression of discrete probability measures, via an improved version of the Lawson-Hanson NNLS solver for the corresponding full and large-scale underdetermined moment system, that can have for example a size order of 10ˆ3 (basis polynomials) x 10ˆ4 (nodes).
File in questo prodotto:
File Dimensione Formato  
DessoleMarcuzziVianello_2020_ALH.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3337806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact