Human T-cell leukemia virus type 1 (HTLV-1) infects about 20 million people world-wide. Around 5% of the infected individuals develop adult T-cell leukemia (ATL) or a neurological disease termed tropical spastic paraparesis (TSP) after a clinical latency of years to decades. Through the use of two promoters and alternative splicing HTLV-1 expresses at least 12 different proteins. HTLV-1 establishes a life-long persistent infection by inducing the clonal expansion of infected cells, a property largely ascribed to the viral genes Tax and HBZ. However, the fact that ATL arises in a minority of infected individuals after a long clinical latency suggests the existence of factors counterbalancing the oncogenic potential of HTLV-1 in the context of natural infection. To study the role of the different HTLV-1 gene products in the HTLV-1 life cycle, we optimized a transfection protocol for primary T-cells using an approach based on the electroporation of in vitro-transcribed RNA. Results showed that the RNA transfection technique combines a high transfection efficiency with low toxicity, not only in Jurkat T-cells but also in primary T-cells. These findings suggest that RNA electroporation is preferable for experiments aimed at investigating the role of HTLV-1 gene products in the context of primary T-cells, which represent the main target of HTLV-1 in vivo.
Expression of HTLV-1 genes in T-Cells using RNA electroporation
Ciminale V.
2017
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects about 20 million people world-wide. Around 5% of the infected individuals develop adult T-cell leukemia (ATL) or a neurological disease termed tropical spastic paraparesis (TSP) after a clinical latency of years to decades. Through the use of two promoters and alternative splicing HTLV-1 expresses at least 12 different proteins. HTLV-1 establishes a life-long persistent infection by inducing the clonal expansion of infected cells, a property largely ascribed to the viral genes Tax and HBZ. However, the fact that ATL arises in a minority of infected individuals after a long clinical latency suggests the existence of factors counterbalancing the oncogenic potential of HTLV-1 in the context of natural infection. To study the role of the different HTLV-1 gene products in the HTLV-1 life cycle, we optimized a transfection protocol for primary T-cells using an approach based on the electroporation of in vitro-transcribed RNA. Results showed that the RNA transfection technique combines a high transfection efficiency with low toxicity, not only in Jurkat T-cells but also in primary T-cells. These findings suggest that RNA electroporation is preferable for experiments aimed at investigating the role of HTLV-1 gene products in the context of primary T-cells, which represent the main target of HTLV-1 in vivo.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.