The experimental ability to alter graphene (G) conductivity by adsorption of a single gas molecule is promoting the development of ultra-high-sensitivity gas detectors and could ultimately provide a novel playground for future nanoelectronics devices. At present, the underpinning effect is broadly attributed to a variation of G carrier concentration, caused by an adsorption-induced Fermi-level shift. By means of first-principle Kubo-Greenwood calculations, here we demonstrate that adsorbate-induced orbital distortion could also lead to small but finite G conductivity changes, even in the absence of Fermi-level shifts. This mechanism enables a sound physical interpretation of the observed variable sensitivity of G devices to different chemical moieties, and it can be strongly enhanced by using a suitable Ni substrate, thereby opening new pathways for the optimal design of operational nanoscale detectors.
Trends in the Change in Graphene Conductivity upon Gas Adsorption: The Relevance of Orbital Distortion
Ambrosetti, Alberto;Silvestrelli, Pier Luigi
2020
Abstract
The experimental ability to alter graphene (G) conductivity by adsorption of a single gas molecule is promoting the development of ultra-high-sensitivity gas detectors and could ultimately provide a novel playground for future nanoelectronics devices. At present, the underpinning effect is broadly attributed to a variation of G carrier concentration, caused by an adsorption-induced Fermi-level shift. By means of first-principle Kubo-Greenwood calculations, here we demonstrate that adsorbate-induced orbital distortion could also lead to small but finite G conductivity changes, even in the absence of Fermi-level shifts. This mechanism enables a sound physical interpretation of the observed variable sensitivity of G devices to different chemical moieties, and it can be strongly enhanced by using a suitable Ni substrate, thereby opening new pathways for the optimal design of operational nanoscale detectors.| File | Dimensione | Formato | |
|---|---|---|---|
|
JPCL_11-2737_2020.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




