Despite its popularity, the construct of biological motion (BM) and its putative anomalies in autism spectrum disorder (ASD) are not completely clarified. In this article, we present a meta-analysis investigating the putative anomalies of BM perception in ASD. Through a systematic literature search, we found 30 studies that investigated BM perception in both ASD and typical developing peers by using point-light display stimuli. A general meta-analysis including all these studies showed a moderate deficit of individuals with ASD in BM processing, but also a high heterogeneity. This heterogeneity was explored in different additional meta-analyses where studies were grouped according to levels of complexity of the BM task employed (first-order, direct and instrumental), and according to the manipulation of low-level perceptual features (spatial vs. temporal) of the control stimuli. Results suggest that the most severe deficit in ASD is evident when perception of BM is serving a secondary purpose (e.g., inferring intentionality/action/emotion) and, interestingly, that temporal dynamics of stimuli are an important factor in determining BM processing anomalies in ASD. Our results question the traditional understanding of BM anomalies in ASD as a monolithic deficit and suggest a paradigm shift that deconstructs BM into distinct levels of processing and specific spatio-temporal subcomponents.

Anomalous Perception of Biological Motion in Autism: A Conceptual Review and Meta-Analysis

Parma V.;Vicovaro M.;Casartelli L.;
2020

Abstract

Despite its popularity, the construct of biological motion (BM) and its putative anomalies in autism spectrum disorder (ASD) are not completely clarified. In this article, we present a meta-analysis investigating the putative anomalies of BM perception in ASD. Through a systematic literature search, we found 30 studies that investigated BM perception in both ASD and typical developing peers by using point-light display stimuli. A general meta-analysis including all these studies showed a moderate deficit of individuals with ASD in BM processing, but also a high heterogeneity. This heterogeneity was explored in different additional meta-analyses where studies were grouped according to levels of complexity of the BM task employed (first-order, direct and instrumental), and according to the manipulation of low-level perceptual features (spatial vs. temporal) of the control stimuli. Results suggest that the most severe deficit in ASD is evident when perception of BM is serving a secondary purpose (e.g., inferring intentionality/action/emotion) and, interestingly, that temporal dynamics of stimuli are an important factor in determining BM processing anomalies in ASD. Our results question the traditional understanding of BM anomalies in ASD as a monolithic deficit and suggest a paradigm shift that deconstructs BM into distinct levels of processing and specific spatio-temporal subcomponents.
2020
File in questo prodotto:
File Dimensione Formato  
SciRep2020.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3335692
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
  • OpenAlex ND
social impact