The cheese industry has high energy consumption, and improvements to plant efficiency may lead to a reduction of its environmental impact. A survey on a sample of small-medium Italian cheese factories was carried out in order to assess the efficiency of heat recovery of the milk pasteurization equipment for the cheese production. Then, an exergetic analysis to calculate the related exergy loss was carried out together with a cost-benefit analysis to identify the optimized value of the heat efficiency. The exergy loss reduction was determined throughout an exergy analysis that takes into account this last value and the comparison with the previous exergy losses. Finally, the feasibility and the consequent additional reduction of exergy losses were verified, if a cogeneration heat and power (CHP) combined to the pasteurization equipment is assumed. Results show a current heat recovery efficiency of 93.2% in the Italian cheese factories; a close connection between the exergetic losses and the efficiency of the heat recovery exchanger; the optimized recovery efficiency equal to 97.3% obtained from the cost-benefit analysis; a related important exergetic loss reduction of −45% in the heat exchangers, as a second result of the exergetic analysis; a similar reduction of the exergy loss (−42%) of the whole system, as a third result of the exergetic analysis; a total exergy loss reduction of 22.9 kJ kg−1milk, which corresponds to a lower environmental impact due to CO2 reduction; a further reduction of the exergy loss of −10% when the cogeneration heat and power CHP are used.

Exergetic analysis and exergy loss reduction in the milk pasteurization for Italian cheese production

Friso D.;Bortolini L.
;
2020

Abstract

The cheese industry has high energy consumption, and improvements to plant efficiency may lead to a reduction of its environmental impact. A survey on a sample of small-medium Italian cheese factories was carried out in order to assess the efficiency of heat recovery of the milk pasteurization equipment for the cheese production. Then, an exergetic analysis to calculate the related exergy loss was carried out together with a cost-benefit analysis to identify the optimized value of the heat efficiency. The exergy loss reduction was determined throughout an exergy analysis that takes into account this last value and the comparison with the previous exergy losses. Finally, the feasibility and the consequent additional reduction of exergy losses were verified, if a cogeneration heat and power (CHP) combined to the pasteurization equipment is assumed. Results show a current heat recovery efficiency of 93.2% in the Italian cheese factories; a close connection between the exergetic losses and the efficiency of the heat recovery exchanger; the optimized recovery efficiency equal to 97.3% obtained from the cost-benefit analysis; a related important exergetic loss reduction of −45% in the heat exchangers, as a second result of the exergetic analysis; a similar reduction of the exergy loss (−42%) of the whole system, as a third result of the exergetic analysis; a total exergy loss reduction of 22.9 kJ kg−1milk, which corresponds to a lower environmental impact due to CO2 reduction; a further reduction of the exergy loss of −10% when the cogeneration heat and power CHP are used.
2020
File in questo prodotto:
File Dimensione Formato  
energies-13-00750.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 517.36 kB
Formato Adobe PDF
517.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3335268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact