In modern manufacturing scenarios, detecting anomalies in production systems is pivotal to keep high-quality standards and reduce costs. Even in the Industry 4.0 context, real-world monitoring systems are often simple and based on the use of multiple univariate control charts. Data-driven technologies offer a whole range of tools to perform multivariate data analysis that allow to implement more effective monitoring procedures. However, when dealing with complex data, common data-driven methods cannot be directly used, and a feature extraction phase must be employed. Feature extraction is a particularly critical operation, especially in anomaly detection tasks, and it is generally associated with information loss and low scalability. In this paper we consider the task of Anomaly Detection with two-dimensional, image-like input data, by adopting a Deep Learning-based monitoring procedure, that makes use of convolutional autoencoders. The procedure is tested on real Optical Emission Spectroscopy data, typical of semiconductor manufacturing. The results show that the proposed approach outperforms classical feature extraction procedures.

A deep learning-based approach to anomaly detection with 2-dimensional data in manufacturing

Maggipinto M.;Beghi A.;Susto G. A.
2019

Abstract

In modern manufacturing scenarios, detecting anomalies in production systems is pivotal to keep high-quality standards and reduce costs. Even in the Industry 4.0 context, real-world monitoring systems are often simple and based on the use of multiple univariate control charts. Data-driven technologies offer a whole range of tools to perform multivariate data analysis that allow to implement more effective monitoring procedures. However, when dealing with complex data, common data-driven methods cannot be directly used, and a feature extraction phase must be employed. Feature extraction is a particularly critical operation, especially in anomaly detection tasks, and it is generally associated with information loss and low scalability. In this paper we consider the task of Anomaly Detection with two-dimensional, image-like input data, by adopting a Deep Learning-based monitoring procedure, that makes use of convolutional autoencoders. The procedure is tested on real Optical Emission Spectroscopy data, typical of semiconductor manufacturing. The results show that the proposed approach outperforms classical feature extraction procedures.
2019
IEEE International Conference on Industrial Informatics (INDIN)
17th IEEE International Conference on Industrial Informatics, INDIN 2019
978-1-7281-2927-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3333279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact