Arrays of nanoholes in metal are important plasmonic devices, proposed for applications spanning from biosensing to communications. In this work, we show that in such arrays the symmetry can be broken by means of the elliptical shape of the nanoholes, combined with the in-plane tilt of the ellipse axes away from the array symmetry lines. The array then differently interacts with circular polarizations of opposite handedness at normal incidence, i.e., it becomes intrinsically chiral. The measure of this difference is called circular dichroism (CD). The nanosphere lithography combined with tilted silver evaporation was employed as a low-cost fabrication technique. In this paper, we demonstrate intrinsic chirality and CD by measuring the extinction in the near-infrared range. We further employ numerical analysis to visualize the circular polarization coupling with the nanostructure. We find a good agreement between simulations and the experiment, meaning that the optimization can be used to further increase CD.

Circular dichroism in low-cost plasmonics: 2D arrays of nanoholes in silver

Cesca T.;Scian C.;Mattei G.;
2020

Abstract

Arrays of nanoholes in metal are important plasmonic devices, proposed for applications spanning from biosensing to communications. In this work, we show that in such arrays the symmetry can be broken by means of the elliptical shape of the nanoholes, combined with the in-plane tilt of the ellipse axes away from the array symmetry lines. The array then differently interacts with circular polarizations of opposite handedness at normal incidence, i.e., it becomes intrinsically chiral. The measure of this difference is called circular dichroism (CD). The nanosphere lithography combined with tilted silver evaporation was employed as a low-cost fabrication technique. In this paper, we demonstrate intrinsic chirality and CD by measuring the extinction in the near-infrared range. We further employ numerical analysis to visualize the circular polarization coupling with the nanostructure. We find a good agreement between simulations and the experiment, meaning that the optimization can be used to further increase CD.
2020
File in questo prodotto:
File Dimensione Formato  
2020-applsci-NHA_ellittici.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3332001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact