To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this paper we derive methods for fusing data from multiple radar sensors in order to improve the accuracy and robustness of such estimates. First we pose the target estimation problem as a multivariate multidimensional spectral estimation problem. The problem is multivariate since each radar sensor gives rise to a measurement channel. Then we investigate how the use of the cross-spectra affects target estimates. We see that the use of the magnitude of the cross-spectrum significantly improves the accuracy of the target estimates, whereas an attempt to compensate the phase lag of the cross-spectrum only gives marginal improvement. This paper may be viewed as a first step towards applying high-resolution methods that builds on multidimensional multivariate spectral estimation for sensor fusion.
Fusion of Sensors Data in Automotive Radar Systems: A Spectral Estimation Approach
Zhu, Bin
;Ferrante, Augusto;Zorzi, Mattia
2019
Abstract
To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this paper we derive methods for fusing data from multiple radar sensors in order to improve the accuracy and robustness of such estimates. First we pose the target estimation problem as a multivariate multidimensional spectral estimation problem. The problem is multivariate since each radar sensor gives rise to a measurement channel. Then we investigate how the use of the cross-spectra affects target estimates. We see that the use of the magnitude of the cross-spectrum significantly improves the accuracy of the target estimates, whereas an attempt to compensate the phase lag of the cross-spectrum only gives marginal improvement. This paper may be viewed as a first step towards applying high-resolution methods that builds on multidimensional multivariate spectral estimation for sensor fusion.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.