The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light–matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerp

Evidence of Cascaded Third-Harmonic Generation in Noncentrosymmetric Gold Nanoantennas

Locatelli Andrea;Carletti Luca;De Angelis Costantino;
2019

Abstract

The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light–matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerp
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3330628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
  • OpenAlex ND
social impact