We consider the classical functional of the Calculus of Variations of the form I(u) = ZΩ F(x, u(x), ∇u(x)) dx where Ω is a bounded open subset of Rn and F : Ω×R×Rn → R is a given Carathéodory function; the admissible functions u coincide with a given Lipschitz function on ∂Ω. We formulate some conditions under which a given function in ϕ + W01,p(Ω) with I(u) < +∞ can be approximated by a sequence of functions uk ∈ ϕ+W01,p(Ω)∩L∞ converging to u in the norm of W1,p, and such that I(uk) → I(u). The problem is strictly related with the non occurrence of the Lavrentiev gap.

Non-Occurrence of a Gap Between Bounded and Sobolev Functions for a Class of Nonconvex Lagrangians

Mariconda, Carlo
;
Treu, Giulia
2020

Abstract

We consider the classical functional of the Calculus of Variations of the form I(u) = ZΩ F(x, u(x), ∇u(x)) dx where Ω is a bounded open subset of Rn and F : Ω×R×Rn → R is a given Carathéodory function; the admissible functions u coincide with a given Lipschitz function on ∂Ω. We formulate some conditions under which a given function in ϕ + W01,p(Ω) with I(u) < +∞ can be approximated by a sequence of functions uk ∈ ϕ+W01,p(Ω)∩L∞ converging to u in the norm of W1,p, and such that I(uk) → I(u). The problem is strictly related with the non occurrence of the Lavrentiev gap.
2020
File in questo prodotto:
File Dimensione Formato  
jca2092-a.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 120.08 kB
Formato Adobe PDF
120.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3324230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact