In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions.

Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm

S. De Marchi;G. Elefante
;
F. Marchetti
2020

Abstract

In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions.
File in questo prodotto:
File Dimensione Formato  
revised_version.pdf

accesso aperto

Descrizione: SGibbs_FH_AAA
Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 428.86 kB
Formato Adobe PDF
428.86 kB Adobe PDF Visualizza/Apri
Treating_the_Gibbs_phenomenon_in_barycentric_rational_interpolation_and_approximation_via_the_S-Gibbs_algorithm-1.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3323880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact