It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry, Proc Lond Math Soc ser 2, 27:151-170, 1926; Moser, Commun Pure Appl Math 9:673, 1956 and 11:257, 1958; Moser, Giorgilli, Discret Contin Dyn Syst 7:855, 2001). The unstable and stable manifolds intersect at an infinity of homoclinic points, generating a complicated homoclinic tangle. In the case of simple mappings it was found (Da Silva Ritter et al., Phys D 29:181, 1987) that the domain of convergence of the formal series extends to infinity along the invariant manifolds. This allows in practice the study of the homoclinic tangle using only series. However in the case of Hamiltonian systems, or mappings with a finite analyticity domain, the convergence of the series along the asymptotic manifolds is also finite. Here, we provide numerical indications that the convergence does not reach any homoclinic points. We discuss in detail the convergence problem in various cases and we find the degree of approximation of the analytical invariant manifolds to the real (numerical) manifolds as (i) the order of truncation of the series increases, and (ii) we use higher numerical precision in computing the coefficients of the series. Then we introduce a new method of series composition, by using action-angle variables, that allows the calculation of the asymptotic manifolds up to an a arbitrarily large extent. This is the first case of an analytic development that allows the computation of the invariant manifolds and their intersections in a Hamiltonian system for an extent long enough to allow the study of homoclinic chaos by analytical means.
Analytical invariant manifolds near unstable points and the structure of chaos
Efthymiopoulos C.;
2014
Abstract
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry, Proc Lond Math Soc ser 2, 27:151-170, 1926; Moser, Commun Pure Appl Math 9:673, 1956 and 11:257, 1958; Moser, Giorgilli, Discret Contin Dyn Syst 7:855, 2001). The unstable and stable manifolds intersect at an infinity of homoclinic points, generating a complicated homoclinic tangle. In the case of simple mappings it was found (Da Silva Ritter et al., Phys D 29:181, 1987) that the domain of convergence of the formal series extends to infinity along the invariant manifolds. This allows in practice the study of the homoclinic tangle using only series. However in the case of Hamiltonian systems, or mappings with a finite analyticity domain, the convergence of the series along the asymptotic manifolds is also finite. Here, we provide numerical indications that the convergence does not reach any homoclinic points. We discuss in detail the convergence problem in various cases and we find the degree of approximation of the analytical invariant manifolds to the real (numerical) manifolds as (i) the order of truncation of the series increases, and (ii) we use higher numerical precision in computing the coefficients of the series. Then we introduce a new method of series composition, by using action-angle variables, that allows the calculation of the asymptotic manifolds up to an a arbitrarily large extent. This is the first case of an analytic development that allows the computation of the invariant manifolds and their intersections in a Hamiltonian system for an extent long enough to allow the study of homoclinic chaos by analytical means.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.