Genetic approaches to control DNA expression in different brain areas have provided an excellent system to characterize gene function in health and disease of animal models. With respect to others, in utero electroporation of exogenous DNA into progenitor cells committed to specific brain areas is the optimal solution in terms of simplicity and velocity. Indeed, this method entails one quick and easy surgical procedure aimed at DNA injection in the embryonic brain followed by brief exposure to a strong electric field by a bipolar electrode. Nevertheless, the technique is still lacking the necessary control and reliability in addressing the field. Moving from a theoretical model that accounts for the morphology and the dielectric properties of the embryonic brain, we developed here a set of novel and reliable experimental configurations based on the use of three electrodes for electroporation in mouse. Indeed, by means of a full 3D model of the embryonic brain and the surrounding enviro...

Increased performance in genetic manipulation by modeling the dielectric properties of the rodent brain

Dal Maschio M.;Ratto G. M.;
2013

Abstract

Genetic approaches to control DNA expression in different brain areas have provided an excellent system to characterize gene function in health and disease of animal models. With respect to others, in utero electroporation of exogenous DNA into progenitor cells committed to specific brain areas is the optimal solution in terms of simplicity and velocity. Indeed, this method entails one quick and easy surgical procedure aimed at DNA injection in the embryonic brain followed by brief exposure to a strong electric field by a bipolar electrode. Nevertheless, the technique is still lacking the necessary control and reliability in addressing the field. Moving from a theoretical model that accounts for the morphology and the dielectric properties of the embryonic brain, we developed here a set of novel and reliable experimental configurations based on the use of three electrodes for electroporation in mouse. Indeed, by means of a full 3D model of the embryonic brain and the surrounding enviro...
2013
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
9781457702167
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3318282
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact