We present a dynamical interpretation of the Monge-Kanto-rovich theory in a stationary regime. This new principle, akin to the Fermat principle of geometrical optics, captures the geodesic character of many distribution networks such as plant roots, river basins and the physiological transportation network of metabolites in living systems. Our general continuum framework allows us to map a previously proposed phenomenological principle into a stationary Monge optimization principle in the Kantorovich relaxed format.

Optimal transport from a point-like source

Franco Cardin
;
Amos Maritan
2019

Abstract

We present a dynamical interpretation of the Monge-Kanto-rovich theory in a stationary regime. This new principle, akin to the Fermat principle of geometrical optics, captures the geodesic character of many distribution networks such as plant roots, river basins and the physiological transportation network of metabolites in living systems. Our general continuum framework allows us to map a previously proposed phenomenological principle into a stationary Monge optimization principle in the Kantorovich relaxed format.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3317631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact