The Gilbert-Steiner problem is a mass transportation problem, where the cost of the transportation depends on the network used to move the mass and it is proportional to a certain power of the "flow". In this paper, we introduce a new formulation of the problem, which turns it into the minimization of a convex functional in a class of currents with coefficients in a group. This framework allows us to define calibrations, which can be used to prove the optimality of concrete configurations. We apply this technique to prove the optimality of a certain irrigation network, having the topological property mentioned in the title.

An optimal irrigation network with infinitely many branching points

Andrea Marchese;Annalisa Massaccesi
2016

Abstract

The Gilbert-Steiner problem is a mass transportation problem, where the cost of the transportation depends on the network used to move the mass and it is proportional to a certain power of the "flow". In this paper, we introduce a new formulation of the problem, which turns it into the minimization of a convex functional in a class of currents with coefficients in a group. This framework allows us to define calibrations, which can be used to prove the optimality of concrete configurations. We apply this technique to prove the optimality of a certain irrigation network, having the topological property mentioned in the title.
File in questo prodotto:
File Dimensione Formato  
MM2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 387.8 kB
Formato Adobe PDF
387.8 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3317116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact