This paper proposes an approach to obtain harmonic compensation and power control by exploiting the electronic power converters deployed in low-voltage microgrids. By the proposed approach, distributed harmonic current compensation is achieved without interfering with the converter's power exchange involved in interfacing the local energy resources (e.g., renewable sources, storage devices) with the grid. The control framework refers to a master/slave microgrid architecture where distributed power converters play as slave units, coordinated by a centralized controller; the data exchange among agents occurs periodically, concerns current magnitudes only, and can be fulfilled by communication means of limited performance. The paper shows the achievable results in terms of power quality improvements and discusses the challenges related with the aimed objective. The proposed methodology is evaluated by means of simulation and experimental tests on a single-phase low-voltage microgrid proto...
A selective harmonic compensation and power control approach exploiting distributed electronic converters in microgrids
Caldognetto T.;Mattavelli P.
2020
Abstract
This paper proposes an approach to obtain harmonic compensation and power control by exploiting the electronic power converters deployed in low-voltage microgrids. By the proposed approach, distributed harmonic current compensation is achieved without interfering with the converter's power exchange involved in interfacing the local energy resources (e.g., renewable sources, storage devices) with the grid. The control framework refers to a master/slave microgrid architecture where distributed power converters play as slave units, coordinated by a centralized controller; the data exchange among agents occurs periodically, concerns current magnitudes only, and can be fulfilled by communication means of limited performance. The paper shows the achievable results in terms of power quality improvements and discusses the challenges related with the aimed objective. The proposed methodology is evaluated by means of simulation and experimental tests on a single-phase low-voltage microgrid proto...File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0142061519302078-main.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
9.71 MB
Formato
Adobe PDF
|
9.71 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.