We define a family of functionals, called p-oscillation functionals, that can be interpreted as discrete versions of the classical total variation functional for p=1 and of the p-Dirichlet functionals for p>1. We introduce the notion of minimizers and prove existence of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers (i.e. minimizers under compact perturbations) in dimension 1.
Minimizers of the p-oscillation functional
Cesaroni, Annalisa;
2019
Abstract
We define a family of functionals, called p-oscillation functionals, that can be interpreted as discrete versions of the classical total variation functional for p=1 and of the p-Dirichlet functionals for p>1. We introduce the notion of minimizers and prove existence of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers (i.e. minimizers under compact perturbations) in dimension 1.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
cdnvDCDSA19.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
631.45 kB
Formato
Adobe PDF
|
631.45 kB | Adobe PDF | Visualizza/Apri |
|
minim.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Creative commons
Dimensione
222.9 kB
Formato
Adobe PDF
|
222.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




