We define a procedure to extract the oscillating part of a given nonlinear Power Spectrum, and derive an equation describing its evolution including the leading effects at all scales. The intermediate scales are taken into account by standard perturbation theory, the long range (IR) displacements are included by using consistency relations, and the effect of small (UV) scales is included via effective coefficients computed in simulations. We show that the UV effects are irrelevant in the evolution of the oscillating part, while they play a crucial role in reproducing the smooth component. Our "extractor" operator can be applied to simulations and real data in order to extract the Baryonic Acoustic Oscillations (BAO) without any fitting function and nuisance parameter. We conclude that the nonlinear evolution of BAO can be accurately reproduced at all scales down to z=0 by our fast analytical method, without any need of extra parameters fitted from simulations.

A robust BAO extractor

Peloso M.;Pietroni M.
2017

Abstract

We define a procedure to extract the oscillating part of a given nonlinear Power Spectrum, and derive an equation describing its evolution including the leading effects at all scales. The intermediate scales are taken into account by standard perturbation theory, the long range (IR) displacements are included by using consistency relations, and the effect of small (UV) scales is included via effective coefficients computed in simulations. We show that the UV effects are irrelevant in the evolution of the oscillating part, while they play a crucial role in reproducing the smooth component. Our "extractor" operator can be applied to simulations and real data in order to extract the Baryonic Acoustic Oscillations (BAO) without any fitting function and nuisance parameter. We conclude that the nonlinear evolution of BAO can be accurately reproduced at all scales down to z=0 by our fast analytical method, without any need of extra parameters fitted from simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3310246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact