We consider the L p Hardy inequality involving the distance to the boundary of a domain in the n-dimensional Euclidean space with nonempty compact boundary. We extend the validity of known existence and non-existence results, as well as the appropriate tight decay estimates for the corresponding minimizers, from the case of domains of class C2 to the case of domains of class C1,γ with γ 2 (0, 1]. We consider both bounded and exterior domains. The upper and lower estimates for the minimizers in the case of exterior domains and the corresponding related non-existence result seem to be new even for C2-domains.

Lp Hardy inequality on C1,γ domains

Lamberti, Pier Domenico;
2019

Abstract

We consider the L p Hardy inequality involving the distance to the boundary of a domain in the n-dimensional Euclidean space with nonempty compact boundary. We extend the validity of known existence and non-existence results, as well as the appropriate tight decay estimates for the corresponding minimizers, from the case of domains of class C2 to the case of domains of class C1,γ with γ 2 (0, 1]. We consider both bounded and exterior domains. The upper and lower estimates for the minimizers in the case of exterior domains and the corresponding related non-existence result seem to be new even for C2-domains.
File in questo prodotto:
File Dimensione Formato  
Final_Lamberti_Pinchover_5_12_17.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 377.63 kB
Formato Adobe PDF
377.63 kB Adobe PDF Visualizza/Apri
Lamberti_Pinchover.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 721.55 kB
Formato Adobe PDF
721.55 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3309219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact