We report a new pathogenic mechanism in von Willebrand disease involving the use of a noncanonical splicing site. The proband, carrying the homozygous c.2269_2270del mutation previously classified as a type 3 mutation, showed severely reduced plasma and platelet von Willebrand factor antigen levels and functions, and no factor VIII binding capacity. A particular von Willebrand factor multimer pattern emerged in plasma, characterized by the presence of only two oligomers: the dimer and an unusually large band, with no intermediate components. There were von Willebrand factor multimers in platelets, but each band ran more slowly than the normal counterpart. No anti- von Willebrand factor antibodies were detectable. The proband was classified as having severe type 1 von Willebrand disease. Seeking the relationship between phenotype and genotype, we found the c.2269_2270del mutation associated with three different RNAs: r.2269_2270del (RNAI), giving a truncated von Willebrand factor protein; r.[2269_2270del;2282_2288del] (RNAII), resulting from activation of a cryptic "AG" splicing site; and r.[2269_2270del;2281_2282insAG] (RNAIII), where the wild-type "AG"acceptor of exon 18 was retained due to the noncanonical 2279-2280 "CG" acceptor splicing site being used. The aberrant RNAII and RNAIII caused the alteration of the furin cleavage and binding sites, respectively, both resulting in a von Willebrand factor protein characterized by the persistence of von Willebrand factor propeptide, as confirmed by Western blot analysis of the recombinant mutated von Willebrand factor molecules produced in vitro. Taken together, these findings explain the residual von Willebrand factor synthesis, slower-running multimers, and absent factor VIII binding capacity. The apparently pure gene null mutation c.2269_2270del profoundly alters von Willebrand factor gene splicing, inducing a complex RNA expression pattern.

Cryptic noncanonical splice site activation is part of the mechanism that abolishes multimer organization in the c.2269_2270del von Willebrand factor

Daidone, Viviana;Galletta, Eva;Casonato, Alessandra
2019

Abstract

We report a new pathogenic mechanism in von Willebrand disease involving the use of a noncanonical splicing site. The proband, carrying the homozygous c.2269_2270del mutation previously classified as a type 3 mutation, showed severely reduced plasma and platelet von Willebrand factor antigen levels and functions, and no factor VIII binding capacity. A particular von Willebrand factor multimer pattern emerged in plasma, characterized by the presence of only two oligomers: the dimer and an unusually large band, with no intermediate components. There were von Willebrand factor multimers in platelets, but each band ran more slowly than the normal counterpart. No anti- von Willebrand factor antibodies were detectable. The proband was classified as having severe type 1 von Willebrand disease. Seeking the relationship between phenotype and genotype, we found the c.2269_2270del mutation associated with three different RNAs: r.2269_2270del (RNAI), giving a truncated von Willebrand factor protein; r.[2269_2270del;2282_2288del] (RNAII), resulting from activation of a cryptic "AG" splicing site; and r.[2269_2270del;2281_2282insAG] (RNAIII), where the wild-type "AG"acceptor of exon 18 was retained due to the noncanonical 2279-2280 "CG" acceptor splicing site being used. The aberrant RNAII and RNAIII caused the alteration of the furin cleavage and binding sites, respectively, both resulting in a von Willebrand factor protein characterized by the persistence of von Willebrand factor propeptide, as confirmed by Western blot analysis of the recombinant mutated von Willebrand factor molecules produced in vitro. Taken together, these findings explain the residual von Willebrand factor synthesis, slower-running multimers, and absent factor VIII binding capacity. The apparently pure gene null mutation c.2269_2270del profoundly alters von Willebrand factor gene splicing, inducing a complex RNA expression pattern.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3307936
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact