A group G has restricted centralizers if for each g in G the centralizer either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
Profinite groups with restricted centralizers of commutators
Detomi E.;
2020
Abstract
A group G has restricted centralizers if for each g in G the centralizer either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DMS_restricted_centralizers_of_commutators-ed-revised.pdf
accesso aperto
Descrizione: Post-prints dell'autore
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Accesso libero
Dimensione
330.47 kB
Formato
Adobe PDF
|
330.47 kB | Adobe PDF | Visualizza/Apri |
2020-profinite-groups-with-restricted-centralizers-of-commutators.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
380.6 kB
Formato
Adobe PDF
|
380.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.