This paper generalizes Thompson and Hilbert metrics to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications.
Conal distances between rational spectral densities
Baggio G.;Ferrante A.;
2019
Abstract
This paper generalizes Thompson and Hilbert metrics to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.