This paper generalizes Thompson and Hilbert metrics to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications.

Conal distances between rational spectral densities

Baggio G.;Ferrante A.;
2019

Abstract

This paper generalizes Thompson and Hilbert metrics to the space of spectral densities. The resulting complete metric space has the differentiable structure of a Finsler manifold with explicit geodesics. The corresponding distances are filtering invariant, can be computed efficiently, and admit geodesic paths that preserve rationality; these are properties of fundamental importance in many engineering applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3303781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact