This paper focuses on ultra-low power embedded classification of neural activities. The machine learning (ML) algorithm has been trained using evoked local field potentials (LFPs) recorded with an implanted 16×16 multi-electrode array (MEA) from the rat barrel cortex while stimulating the whisker. Experimental results demonstrate that ML can be successfully applied to noisy single-trial LFPs. We achieved up to 95.8% test accuracy in predicting the whisker deflection. The trained ML model is successfully implemented on a low-power embedded system with an average consumption of 2.6 mW.
Embedded Classification of Local Field Potentials Recorded from Rat Barrel Cortex with Implanted Multi-Electrode Array
Mahmud M.;Cecchetto C.;Vassanelli S.;
2018
Abstract
This paper focuses on ultra-low power embedded classification of neural activities. The machine learning (ML) algorithm has been trained using evoked local field potentials (LFPs) recorded with an implanted 16×16 multi-electrode array (MEA) from the rat barrel cortex while stimulating the whisker. Experimental results demonstrate that ML can be successfully applied to noisy single-trial LFPs. We achieved up to 95.8% test accuracy in predicting the whisker deflection. The trained ML model is successfully implemented on a low-power embedded system with an average consumption of 2.6 mW.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




