The quite recent (at least on the evolutionary time scale) emergence of nervous systems in complex organisms enabled the living beings to build a wide-ranging model of the external world in order to predict and evaluate the outcomes of their actions. Such a process likely represents a real coding activity, since, by proper handling of information, it generates a mapping between the external environment and internal cerebral activity patterns. The patterns of neural activity that correspond to the final maps, however, emerge from the holistic assembly of a multilevel functional organization. Nerve tissue components, indeed, appear organized in compartments, also called functional modules (FM), that contain system components and circuits of different miniaturizations not only arranged to work together either in parallel or in series but also nested within each other. At least three levels can be recognized in a functional module and it is possible to point out that such a hierarchical organization of the brain circuits could be mirrored by a corresponding hierarchical organization of biocodes. This feature can also suggest the hypothesis that the same logic could operate also at system level to integrate FM into functional brain areas and to associate areas to generate the final map used by humans to image the external world and to imagine untestable worlds.

FROM THE HIERARCHICAL ORGANIZATION OF THE CENTRAL NERVOUS SYSTEM TO THE HIERARCHICAL ASPECTS OF BIOCODES

Guidolin, D
Writing – Original Draft Preparation
;
Tortorella, C
Membro del Collaboration Group
;
2019

Abstract

The quite recent (at least on the evolutionary time scale) emergence of nervous systems in complex organisms enabled the living beings to build a wide-ranging model of the external world in order to predict and evaluate the outcomes of their actions. Such a process likely represents a real coding activity, since, by proper handling of information, it generates a mapping between the external environment and internal cerebral activity patterns. The patterns of neural activity that correspond to the final maps, however, emerge from the holistic assembly of a multilevel functional organization. Nerve tissue components, indeed, appear organized in compartments, also called functional modules (FM), that contain system components and circuits of different miniaturizations not only arranged to work together either in parallel or in series but also nested within each other. At least three levels can be recognized in a functional module and it is possible to point out that such a hierarchical organization of the brain circuits could be mirrored by a corresponding hierarchical organization of biocodes. This feature can also suggest the hypothesis that the same logic could operate also at system level to integrate FM into functional brain areas and to associate areas to generate the final map used by humans to image the external world and to imagine untestable worlds.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3302878
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact