Background: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease progressively affecting upper and lower motor neurons in the brain and spinal cord. Mean life expectancy is three to five years, with paralysis of muscles, respiratory failure and loss of vital functions being the common causes of death. Clinical manifestations of ALS are heterogeneous due to the mix of anatomic regions involvement and the variability in disease course; consequently, diagnosis and prognosis at the level of individual patient is really challenging. Prediction of ALS progression and stratification of patients into meaningful subgroups have been long-standing interests to clinical practice, research and drug development. Methods: We developed a Dynamic Bayesian Network (DBN) model on more than 4500 ALS patients included in the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT), in order to detect probabilistic relationships among clinical variables and identify risk...

A Dynamic Bayesian Network model for the simulation of Amyotrophic Lateral Sclerosis progression

ZANDONA', ALESSANDRO;VASTA, ROSARIO;Di Camillo, Barbara
2019

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease progressively affecting upper and lower motor neurons in the brain and spinal cord. Mean life expectancy is three to five years, with paralysis of muscles, respiratory failure and loss of vital functions being the common causes of death. Clinical manifestations of ALS are heterogeneous due to the mix of anatomic regions involvement and the variability in disease course; consequently, diagnosis and prognosis at the level of individual patient is really challenging. Prediction of ALS progression and stratification of patients into meaningful subgroups have been long-standing interests to clinical practice, research and drug development. Methods: We developed a Dynamic Bayesian Network (DBN) model on more than 4500 ALS patients included in the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT), in order to detect probabilistic relationships among clinical variables and identify risk...
2019
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1334886365.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3300523
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact